dc.contributor.author |
Stucki, S. |
|
dc.contributor.author |
Orozco-Terwengel, P. |
|
dc.contributor.author |
Forester, B. R. |
|
dc.contributor.author |
Duruz, S. |
|
dc.contributor.author |
Colli, L. |
|
dc.contributor.author |
Masembe, C. |
|
dc.contributor.author |
Negrini, R. |
|
dc.contributor.author |
Landguth, E. |
|
dc.contributor.author |
Jones, M. R. |
|
dc.contributor.author |
Bruford, M. W. |
|
dc.contributor.author |
Taberlet, P. |
|
dc.contributor.author |
Joost, S. |
|
dc.date.accessioned |
2021-01-01T21:58:01Z |
|
dc.date.available |
2021-01-01T21:58:01Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
1755-098X |
|
dc.identifier.uri |
http://combine.alvar.ug/handle/1/48122 |
|
dc.description.abstract |
With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present SAMbADA, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. SAMbADA identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, SAMbADA calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with SAMbADA, BAYENV, LFMM and an FST outlier method (FDIST approach in ARLEQUIN) and compare their results. SAMbADA - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. |
|
dc.description.sponsorship |
EUEuropean Union (EU) [KBBE-2009-1-1-03] |
|
dc.language |
English |
|
dc.publisher |
WILEY |
|
dc.relation.ispartof |
Molecular Ecology Resources |
|
dc.subject |
Environmental Correlations |
|
dc.subject |
Genome Scans |
|
dc.subject |
High Performance Computing |
|
dc.subject |
Landscape Genomics |
|
dc.subject |
Local Adaptation |
|
dc.subject |
Spatial Autocorrelation |
|
dc.title |
High performance computation of landscape genomic models including local indicators of spatial association |
|
dc.type |
Article |
|
dc.identifier.isi |
000415921600020 |
|
dc.identifier.doi |
10.1111/1755-0998.12629 |
|
dc.identifier.pmid |
271969 |
|
dc.publisher.city |
HOBOKEN |
|
dc.publisher.address |
111 RIVER ST, HOBOKEN 07030-5774, NJ USA |
|
dc.identifier.eissn |
1755-0998 |
|
dc.identifier.volume |
17 |
|
dc.identifier.issue |
5 |
|
dc.identifier.spage |
1072 |
|
dc.identifier.epage |
1089 |
|
dc.subject.wc |
Biochemistry & Molecular Biology |
|
dc.subject.wc |
Ecology |
|
dc.subject.wc |
Evolutionary Biology |
|
dc.subject.sc |
Biochemistry & Molecular Biology |
|
dc.subject.sc |
Environmental Sciences & Ecology |
|
dc.subject.sc |
Evolutionary Biology |
|
dc.description.oa |
Green Accepted |
|
dc.description.oa |
Other Gold |
|
dc.description.oa |
Green Published |
|
dc.description.pages |
18 |
|
dc.contributor.group |
Nextgen Consortium |
|
dc.subject.kwp |
Population-Structure |
|
dc.subject.kwp |
Allele Frequencies |
|
dc.subject.kwp |
Computer-Program |
|
dc.subject.kwp |
Genetic-Analysis |
|
dc.subject.kwp |
Candidate Loci |
|
dc.subject.kwp |
Selection |
|
dc.subject.kwp |
Adaptation |
|
dc.subject.kwp |
Markers |
|
dc.subject.kwp |
Wide |
|
dc.subject.kwp |
Autocorrelation |
|
dc.description.affiliation |
Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Lab Geog Informat Syst LASIG, CH-1015 Lausanne, Switzerland |
|
dc.description.affiliation |
Cardiff Univ, Sch Biosci, Sir Martin Evans Bldg, Cardiff CF10 3AX, S Glam, Wales |
|
dc.description.affiliation |
Duke Univ, Nicholas Sch Environm, Univ Program Ecol, Durham, NC 27708 USA |
|
dc.description.affiliation |
Univ Cattolica S Cuore, Ist Zootecn, BioDNA Ctr Ric Biodiversita & DNA Ant, Via E Parmense 84, I-29100 Piacenza, Italy |
|
dc.description.affiliation |
Makerere Univ, Dept Zool Entomol & Fisheries Sci, Coll Nat Sci, Box 7062, Kampala, Uganda |
|
dc.description.affiliation |
Assoc Italiana Allevatori, I-00161 Rome, Italy |
|
dc.description.affiliation |
Univ Montana, Div Biol Sci, Missoula, MT 59812 USA |
|
dc.description.affiliation |
CNRS, Lab Ecol Alpine LECA, F-38000 Grenoble, France |
|
dc.description.affiliation |
Univ Grenoble Alpes, Lab Ecol Alpine LECA, F-38000 Grenoble, France |
|
dc.description.email |
Stephane.Joost@epfl.ch |
|
dc.description.corr |
Joost, S (corresponding author), Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Lab Geog Informat Syst LASIG, CH-1015 Lausanne, Switzerland. |
|
dc.description.orcid |
Joost, Stephane/0000-0002-1184-7501 |
|
dc.description.orcid |
Orozco-terWengel, Pablo Andres/0000-0002-7951-4148 |
|
dc.description.orcid |
Bruford, Michael W/0000-0001-6357-6080 |
|
dc.description.orcid |
Jones, Matthew/0000-0002-4822-157X |
|
dc.description.orcid |
Forester, Brenna/0000-0002-1608-1904 |
|
dc.description.orcid |
Masembe, Charles/0000-0002-9581-0414 |
|