combine@alvar.ug

High performance computation of landscape genomic models including local indicators of spatial association

High performance computation of landscape genomic models including local indicators of spatial association

Show simple record

dc.contributor.author Stucki, S.
dc.contributor.author Orozco-Terwengel, P.
dc.contributor.author Forester, B. R.
dc.contributor.author Duruz, S.
dc.contributor.author Colli, L.
dc.contributor.author Masembe, C.
dc.contributor.author Negrini, R.
dc.contributor.author Landguth, E.
dc.contributor.author Jones, M. R.
dc.contributor.author Bruford, M. W.
dc.contributor.author Taberlet, P.
dc.contributor.author Joost, S.
dc.date.accessioned 2021-01-01T21:58:01Z
dc.date.available 2021-01-01T21:58:01Z
dc.date.issued 2017
dc.identifier.issn 1755-098X
dc.identifier.uri http://combine.alvar.ug/handle/1/48122
dc.description.abstract With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present SAMbADA, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. SAMbADA identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, SAMbADA calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with SAMbADA, BAYENV, LFMM and an FST outlier method (FDIST approach in ARLEQUIN) and compare their results. SAMbADA - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing.
dc.description.sponsorship EUEuropean Union (EU) [KBBE-2009-1-1-03]
dc.language English
dc.publisher WILEY
dc.relation.ispartof Molecular Ecology Resources
dc.subject Environmental Correlations
dc.subject Genome Scans
dc.subject High Performance Computing
dc.subject Landscape Genomics
dc.subject Local Adaptation
dc.subject Spatial Autocorrelation
dc.title High performance computation of landscape genomic models including local indicators of spatial association
dc.type Article
dc.identifier.isi 000415921600020
dc.identifier.doi 10.1111/1755-0998.12629
dc.identifier.pmid 271969
dc.publisher.city HOBOKEN
dc.publisher.address 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
dc.identifier.eissn 1755-0998
dc.identifier.volume 17
dc.identifier.issue 5
dc.identifier.spage 1072
dc.identifier.epage 1089
dc.subject.wc Biochemistry & Molecular Biology
dc.subject.wc Ecology
dc.subject.wc Evolutionary Biology
dc.subject.sc Biochemistry & Molecular Biology
dc.subject.sc Environmental Sciences & Ecology
dc.subject.sc Evolutionary Biology
dc.description.oa Green Accepted
dc.description.oa Other Gold
dc.description.oa Green Published
dc.description.pages 18
dc.contributor.group Nextgen Consortium
dc.subject.kwp Population-Structure
dc.subject.kwp Allele Frequencies
dc.subject.kwp Computer-Program
dc.subject.kwp Genetic-Analysis
dc.subject.kwp Candidate Loci
dc.subject.kwp Selection
dc.subject.kwp Adaptation
dc.subject.kwp Markers
dc.subject.kwp Wide
dc.subject.kwp Autocorrelation
dc.description.affiliation Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Lab Geog Informat Syst LASIG, CH-1015 Lausanne, Switzerland
dc.description.affiliation Cardiff Univ, Sch Biosci, Sir Martin Evans Bldg, Cardiff CF10 3AX, S Glam, Wales
dc.description.affiliation Duke Univ, Nicholas Sch Environm, Univ Program Ecol, Durham, NC 27708 USA
dc.description.affiliation Univ Cattolica S Cuore, Ist Zootecn, BioDNA Ctr Ric Biodiversita & DNA Ant, Via E Parmense 84, I-29100 Piacenza, Italy
dc.description.affiliation Makerere Univ, Dept Zool Entomol & Fisheries Sci, Coll Nat Sci, Box 7062, Kampala, Uganda
dc.description.affiliation Assoc Italiana Allevatori, I-00161 Rome, Italy
dc.description.affiliation Univ Montana, Div Biol Sci, Missoula, MT 59812 USA
dc.description.affiliation CNRS, Lab Ecol Alpine LECA, F-38000 Grenoble, France
dc.description.affiliation Univ Grenoble Alpes, Lab Ecol Alpine LECA, F-38000 Grenoble, France
dc.description.email Stephane.Joost@epfl.ch
dc.description.corr Joost, S (corresponding author), Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Lab Geog Informat Syst LASIG, CH-1015 Lausanne, Switzerland.
dc.description.orcid Joost, Stephane/0000-0002-1184-7501
dc.description.orcid Orozco-terWengel, Pablo Andres/0000-0002-7951-4148
dc.description.orcid Bruford, Michael W/0000-0001-6357-6080
dc.description.orcid Jones, Matthew/0000-0002-4822-157X
dc.description.orcid Forester, Brenna/0000-0002-1608-1904
dc.description.orcid Masembe, Charles/0000-0002-9581-0414


This record appears in the collections of the following institution(s)

Show simple record

Search Entire Database


Browse

My Account